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Supporting Material
Brownian Dynamics

We performed the Brownian Dynamics (BD) simulations using 3D potential of mean force (PMF) maps to
calculate the ion—DNA interactions as described in Comer and Aksimentiev (1). Briefly, the PMF
between each ion (K" or CI') and each isolated DNA nucleotide (A, T, G, or C) was computed in 3D from a
series of all-atom molecular dynamics simulations. Radial ion-ion PMF functions were also computed
from all-atom molecular dynamics for each ion pair to model ion-ion forces in the BD simulations.

We created the PMF maps for the simulated BD systems by rigidly transforming the PMF maps for
isolated nucleotides and adding them together along with a potential energy function representing the
membrane and nanopore. The BD simulation system measured 4.0x4.0x7.2 nm>. The potential energy of
a 1.8 nm-diameter pore in a 3.5 nm membrane was described using eq. 4 from ref. (1). Basepair maps
were created by rigidly transforming the nucleotide maps to best match an atomic model of a basepair
in a double-stranded DNA. The final models were assembled by adding three basepair maps to the
system PMF for each ion. The basepairs were tilted in the pore so that the normal to the plane of the
bases was 50 degrees from the pore axis. One basepair was placed in the center of the pore, while the
other two were translated -0.65 and 0.65 nm, respectively, along the pore axis. Such a conformation
resembles that of a double stranded DNA stretched in a nanopore(2). A total of 128 PMF maps were
created for each of the 64 possible DNA sequences and each of the two ions.

We applied a uniform electric field of 180 mV/7.2 nm to the ions in the direction of the pore axis to
simulate a 180 mV bias (3). Each system contained 56 K" and 50 CI  ions, which corresponds to a bulk KCI
concentration of 1.3 M, and was electrically neutral. We used constant diffusion coefficients of 1.75 and
1.85 nm?/ns for K" and CI ions, respectively; thus, we did not consider a position-dependent diffusivity
of the ions. A 20 fs time step was used to integrate the BD equations of motion. For each DNA sequence,
we performed 10 independent BD simulations (each 160 ns in length) with different initial ion positions.

To calculate ion current from the BD simulations, we employed the method described by Aksimentiev
and Schulten(3) modified(4) to restrict the calculation to ions within 1.4 nm of the center of the
membrane. In this method, the current is computed from ion displacements between consecutive
frames of the simulation trajectory. In computing the mean current, the first 4 ns of each simulation was
discarded. Therefore, the mean current values plotted in Figure 1A represent an average over 1560 ns.

The quoted uncertainties in the current values were computed by A= O'(‘L')/\/N, where o is the standard
deviation of the current values for all pairs of consecutive frames, t=0.04 ns is the time between frames
and N=38980 is the number of pairs of consecutive frames. We have found that the standard deviation
of the current calculated between two frames depends on the time between frames as o(7) =

A (1/\/?) , Where A is a constant. Because the number of pairs of frames N = T /1, where T=1.6 ps is
the total simulation time, A= A 1/vT and does not depend on 1, the time between frames. Thus, A is
the appropriate measure for the uncertainty of the currents calculated from the simulations. That is, if
one performed another 1.6 ps simulation using a different set of random numbers, there is a high



probability (about 68% since the current values appear normally distributed) that the estimated current
from the new simulation would differ by less than delta.

The statistical uncertainty, A, is due solely to fluctuations in the number of ions in pore and thermal
motion of these ions. It can always be reduced by increasing the simulation time. Therefore, the range
of uncertainties quoted here (~5 pA) can be seen as a lower bound for the uncertainty of analogous
experimental measurements in which the DNA is held in a fixed conformation for 1.6 us. A relevant
uncertainty for currents measured in experiments would be the standard deviation of independent
current measurements on the same sequence. Due to the fact that the DNA conformation may vary
slightly (or significantly, depending on the pore geometry) from measurement to measurement, a much
larger lower bound for the uncertainty may exist that cannot be reduced by increasing the time over
which the current is sampled.

Simulated Base-Calling

To perform base-calling, we first simulated the current signature using the sequence of interest, either A
DNA or segments of the human genome (hg19; GRCh37). We took each triplet of basepairs and
generated a current value using Gaussian random values. The mean and standard deviation of the
random values was set using the mean and expected standard deviation observed in the BD simulation
of that triplet.

A hidden Markov model was then constructed, using the HiddenMarkov package in R. The emission
probabilities for each state were set as Gaussian distributions, with the mean and standard deviation
given by the BD simulation for each triplet state. When using the Viterbi algorithm, we set the transition
matrix assuming single base steps, i.e. 0.25 for each of the four possibilities described earlier. If we are
using only a single current measurement, we set the transition matrix equal for all 64 possibilities
(0.015625). Similarly, we set marginal probability for the initial time point to be equal for all 64
possibilities (0.015625). To decode the current signal, we applied the Viterbi algorithm, using the
described model, which gave us a series of triplets. We took the center base from each triplet, and
reassembled the DNA sequence, then checked the number of bases that were correct.

To vary the noise level, we altered the simulation of the current signature, by applying a multiplier to
the standard deviations. By iterating through different values of the multiplier, we measured the effect
of SNR on the basecalling efficiency, performing 20 stochastic realizations for each noise level.

To basecall the human genome, we used each complete contig, divided up into 50kb fragments. Each
50kb fragment was called as described above. To determine the length dependence of our basecalling
method, we selected a large contig (74 Mb) from human chromosome 1 (30028083-103863906; hg19);
we took 30,000 randomly sized fragments from this contig, with replacement. Sequence complexity was
calculated using }; —(%) logz(%), where f; is the triplet frequency for triplet i in a fragment of length w.
We calculated this entropy for each fragment of the genome, as a rough estimate of the complexity of

each sequence.

Signal to Noise Ratio Calculation



To calculate signal to noise ratio, we used the ratio of the mean signal level to the standard deviation:

SNR = ‘u/o—. To compare to reported experimental results, we used the values reported in Manrao et
al.(5). We calculated the standard deviation using the HWHH (half-width half-height) values reported,

assuming a normal distribution: ¢ = (2 HWHH) /(2 v21n 2).

To find the values at which the SNR vs. error curves saturated, we used the derivative of the mean logy
error values (from each noise level), and found the point at which this derivative dropped below 0.01.
This was reported as the saturation point.
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Supplementary Figure 1: Histograms of possible currents for basepairs. A) Histogram of current values for
different triplets in an easily distinguishable region - a current of 260pA (dotted line) is easily called(correctly) as
GTG. B) Histogram of current values for a difficult to distinguish region - a current of 333pA is called as GGG, not
as TCG. Q) If we use the information from the previous triplet(in this case GTC) - we can eliminate many of the
possible triplet states, as only states which share in common the last two bases of the last triplet (TC) as the first
two bases of the new triplet are possible. The probability for each state is given as equal in this case (1/4). D)
After convolving the probability of the states with the histograms, the calls become much easier. Unlikely states
have been reduced to light gray. Note that TCC and TCT are still virtually indistinguishable from each other; if
the current was 320pA, a third read would be needed to distinguish the bases.



60

50

Read Density (Single)

Single

Viterbi

\

10%

-log, (Noise)

1000s

100s

10s

log, ,(time)

1s

100ms

10ms

0%
-log, (Error)

| L AL B
1%

Viterbi

Counts
40521

35456
30391
25326
20261
15195
10130

5065

12899

11287

9674

8062

6450

4837

3225

1612

0

0

10 100 1k

10k 100k
log, (length (bp))

™

3 1 B)
- 1% 3
o)

T

SE <

= 9
-

Nﬁ? w ]
T n 3

o c = 10% 3
Q (@)]

o 9o
1

_ O

S 9
o

o 3

S 100% 3

0

Counts

1037 380
907 333
778 285
648 238
519 190
389 143
259 95
130 48
0 0

10 100 1k

100k
log, (length (bp))

10k

™

Counts
1538

1346
1154
961
769
577

385

192

0

Supplementary Figure 2: Testing effectiveness of
the algorithm using the human genome. A)
Histogram of log error rate for the Viterbi method
(red) versus using only a single measurment
(without prior information) (black), from 50 kb
fragments of the entire mapped human genome
(hg19). Viterbi base-calling has an accuracy of
98.2%+3.9%, compared to 47.4%+1.9% without
using prior information. B) Bivariate histogram
(hexagonally binned) of Shannon’s entropy as a
measure of sequence complexity versus log error
rate, using the entire mapped human genome
(hg19). Error drops dramatically as complexity
increases for the Viterbi algorithm. C) Bivariate
histogram of length versus error rate for random
length fragments from (chr1: 30028083-
103863906; hg19). Viterbi algorithm is shown in
red, single current value in black. D) Bivariate
histogram of length versus log computational time
for base-calling from the same simulation as in C).
Log computational time scales as log length.





